The influence of a heat treatment on properties of Cu-Zn alloy from a cyanide-free and Zinc sulphate baths

Main Article Content

Ilyes Abacha
Salah Boukherissa

Abstract




We present an alternative method aiming to reduce the toxicity and the cost of electropla- ting of Cu-Zn alloy (usually prepared from cyanide baths) while maintaining the decorative qualities and anticorrosive properties of the coating. For this purpose, Cu-Zn alloys were obtained in two steps from non-cyanide electrolytes. First, a copper layer electrodeposited onto a nickel under-layer, followed by a thin layer of zinc from three different simple non- cyanide zinc baths. The Zn/Cu/Ni sandwich system was then subjected to heat treatment at a temperature of 400°C, to ensure the diffusion of zinc into the copper layer to give the desired Cu-Zn alloy structure. The synthesized films were characterized by using X-ray diffraction XRD, scanning electron microscopy and energy dispersive X-ray spectroscopy (EDS). XRD demonstrated that the electrodeposited films are crystalline and present the Cu0.7Zn0.3 phase with preferential (111) orientation. An analysis of XRD patterns revealed that after heat treatment, the Cu-Zn alloys were composed of a predominating α-phase structure. The morphology and composition of the coatings depends on the zinc plating bath type. After annealing, well defined pseudo-spherical Cu-Zn grains were formed cove- ring the entire substrate surface. The EDS analysis indicated the formation of Cu0.7Zn0.3 brass alloys, corrosion was studied by impedance spectroscopy. The results showed the feasibility of this low-cost and new route for the preparation of good quality Cu–Zn alloys from cyanide-free electrolytes.




Article Details

How to Cite
Abacha, I., & Boukherissa, S. (2020). The influence of a heat treatment on properties of Cu-Zn alloy from a cyanide-free and Zinc sulphate baths. Materials and Biomaterials Science, 3(2), 059-064. Retrieved from http://mbmscience.com/index.php/mbms/article/view/30
Section
Original Paper

References

Abacha, and S. Boukhrissa Surface Engineering and Ap- plied Electrochemistry, 2018, Vol. 54, No. 5, pp. 459–467.

Selloum, D., Henni, A., Karar, A., Tabchouche, A., Har- fouche, N., Bacha, O., Rosei, F. (2019). Solid State Sciences, 2019, 92, 76-80.

Henni, A., Merrouche, A., Telli, L., Karar, A. Journal of Electroanalytical Chemistry, 2016, 763, 149-154.

Henni, A., Merrouche, A., Telli, L., Karar, A., Ezema, F. I., & Haffar, H. Journal of Solid State Electrochemistry, 2016, 20(8), 2135-2142.

Henni, A., & Karar, A. Materials and Biomaterials Science, 2018, 1(1), 001-005.

Lowenheim F.A. Scholar. New York: McGraw-Hill, 1978. 7. Henni, A., Harfouche, N., Karar, A., Zerrouki, D., Perrin, F. X., & Rosei, F. Solid State Sciences, 2019, 98, 106039. 8. Raub E., Krause D. Z Elektrochem. 1994, 50, 91–96.

Banerjee T., Allmand A.J. Trans Faraday Soc. 1948, 44, 819–833.

Kowalski A.J. Plat Surf Finish. 2000, 87, 28–31.

Saadatmand M., Sadeghpour S., Aghazadeh Mohan-desi. J Sur f Eng. 2011, 27, 19–25.

Senna L.F., Diaz S.L., Sathler L. J Appl Electrochem. 2003, 1155–1161.

Beattie S.D., Dahn J.R. J Electrochem Soc. 2003, 150, C802.

Carlos I.A., De Almeida M.R.H. J Electroanal Chem. 2004, 562, 153–159.

Despi A.R., Marinovi V., Jovi V.D. J Electroanal Chem.1992, 339, 473–488.

Li H., Yu S. New J Chem. 2017, 41, 5436–5444.

Rittermeier A., Miao S., Schröter M.K., Zhang X. Phys Chem Chem Phys. 2009, 11, 8358–8366.

S.M.Z. F.Y. Ge, Zhang Y., Wang S., Xu K., Gaodeng Xuexiao Huaxue Xuebao, Gaodeng Xuexiao Huaxue Xuebao. 1995, 16, 87.

Yan H., Downes J., Boden P.J., Harris S.J. J Electrochem Soc. 1996, 143, 1577.

Wang D.L., Wu Y.Q., Zhong X.Y., Zhang W.Q. et al. Russ J Electrochem. 2009, 45, 291–295.

Wang Y., Ma J., Liu P., Chen Y. et al. Mater Lett. 2012, 77, 13–16.

Haberkorn N., Ahlers M., Lovey F.C. Scr Mater. 2009, 61,821–824.

De Vreese P., Skoczylas A., Matthijs E., Fransaer J. et al. Electrochim Acta. 2013, 108, 788–794.

Hansen M., u. K. Anderko. Constitution of binary alloys. 2nd edition. Genium Pub Corp., 1988.

Yurdal K., Karahan.H. Acta Phys Pol A. 2017, 132, 1091–1094.

Schüle W., Lang E., Donner D., Penkuhn H. Radiat Eff. 1970, 2, 151–163.

Sequeira C.A.C., Nunes C.M.G.S. Surf Eng. 1987, 3, 161–167.

Cullity B.D. Elements of X-ray Diffraction. Addison-Wesley Publishing Company, Inc., 1978.